Global polarization of hyperons from STAR experiment

Takafumi Niida for the STAR Collaboration

Important features in non-central heavy-ion collisions

Strong magnetic field

$$B \sim 10^{13} {\rm T}$$

 $(eB \sim m_{\pi}^2 \ (\tau \sim 0.2 \ {\rm fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Orbital angular momentum

$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

$$\sim bA\sqrt{s_{\scriptscriptstyle NN}} \sim 10^6 \hbar$$

Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)

- ffect/wave
- typical **Particle polarization**

$$B \sim 0.1 - 0.5 \text{ T}$$
 $B \sim 10^{11} \text{ T}$

$$B \sim 10^{11} {\rm T}$$

wikipedia

- → Chiral vortical effect
- → Particle polarization

Global polarization

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)
- Orbital angular momentum is transferred to particle spin
 - Particles' and anti-particles' spins are aligned along angular momentum, **L**
- Magnetic field align particle's spin
 - Particles' and antiparticles' spins are aligned in opposite direction along **B** due to the opposite sign of magnetic moment

Produced particles will be "globally" polarized along **L** and **B**. **B** might be studied by particle-antiparticle difference.

How to measure the polarization?

Parity-violating weak decay of hyperons ("self-analyzing")

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$\frac{dN}{d\cos\theta^*} \propto 1 + \alpha_H P_H \cos\theta^*$$

P_H: hyperon polarization

 θ *: polar angle of daughter relative to the polarization direction in hyperon rest frame

 α_H : hyperon decay parameter

Note: α_H for Λ recently updated (BESIII and CLAS) α_{Λ} =0.732±0.014, $\alpha_{\bar{\Lambda}}$ =-0.758±0.012 P.A. Zyla et al. (PDG), Prog.Theor.Exp.Phys.2020.083C01

* Published results are based on $\alpha_{\Lambda}=-\alpha_{\Lambda}=0.64\pm0.013$ New results use new α where existing results are scaled by $\alpha_{old}/\alpha_{new}$ $\Lambda \rightarrow p + \pi^-$ (BR: 63.9%, c τ ~7.9 cm)

How to measure the "global" polarization?

"global" polarization: spin alignment along the initial angular momentum

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)

S. Voloshin and TN, PRC94.021901(R)(2016)

$$P_{\rm H} = \frac{8}{\pi \alpha_{\rm H}} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{\text{Res}(\Psi_1)}$$

Ψ₁: azimuthal angle of b

 ϕ_p^* : angle of daughter proton in Λ rest frame

STAR, PRC76, 024915 (2007)

Signal extraction with A hyperons

Feed-down effect

- □ ~60% of measured Λ are feed-down from $\Sigma^* \to \Lambda \pi$, $\Sigma^0 \to \Lambda \gamma$, $\Xi \to \Lambda \pi$
- Polarization of parent particle R is transferred to its daughter Λ
 (Polarization transfer could be negative!)

$$\mathbf{S}^*_{\Lambda} = C\mathbf{S}^*_{R}$$
 $\langle S_y \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S}B)$

 $C_{\Lambda R}$: coefficient of spin transfer from parent R to Λ

S_R: parent particle's spin

 $f_{\Lambda R}$: fraction of Λ originating from parent R

 μ_R : magnetic moment of particle R

$$\begin{pmatrix} \varpi_{\mathbf{c}} \\ B_{\mathbf{c}}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Decay	C
Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 o \Lambda + \pi^0$	+0.900
$\Xi^- o \Lambda + \pi^-$	+0.927
$\Sigma^0 o \Lambda + \gamma$	-1/3

Primary Λ polarization will be diluted by 15%-20% (model-dependent)

This also suggests that the polarization of daughter particles can be used to measure the polarization of its parent! e.g. Ξ , Ω

First observation in BES-I

Positive polarization signal at lower energies!

- PH looks to increase in lower energies

$$P_{\Lambda} \simeq rac{1}{2} rac{\omega}{T} + rac{\mu_{\Lambda} B}{T}$$
 $P_{ar{\Lambda}} \simeq rac{1}{2} rac{\omega}{T} - rac{\mu_{\Lambda} B}{T}$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$\omega = (P_{\Lambda} + P_{\bar{\Lambda}})k_B T/\hbar$$

$$\sim 0.02 \text{-} 0.09 \text{ fm}^{-1}$$

$$\sim 0.6 \text{-} 2.7 \times 10^{22} \text{s}^{-1}$$

- The most vortical fluid!

μ_Λ: Λ magnetic moment
T: temperature at thermal equilibrium
(T=160 MeV)

Hint of the difference between Λ and anti- Λ P_H

- Effect of the initial magnetic field? (discussed later)

Precise measurements at $\sqrt{s_{NN}} = 200$ GeV

STAR, PRC98, 014910 (2018)

Confirmed energy dependence with new results at 200 GeV

- >5σ significance utilizing 1.5B events
- partly due to stronger shear flow structure at lower √s_{NN} because of baryon stopping

$$P_H(\Lambda)$$
 [%] = 0.277 ± 0.040(stat) ± $^{0.039}_{0.049}$ (sys)

$$P_H(\bar{\Lambda})$$
 [%] = 0.240 ± 0.045(stat) ±^{0.061}_{0.045} (sys)

Theoretical models can describe the data well

- I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE
- H. Li et al., PRC96, 054908 (2017), AMPT
- Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE
- Y. Xie et al., PRC95, 031901(R) (2017), PICR
- D.-X. Wei et al., PRC99, 014905 (2019), AMPT

Collection of recent results

ALICE, PRC101.044611 (2020)
F. Kornas (HADES), SQM2019
J. Adams, K. Okubo (STAR), QM2019

- STAR preliminary at 27 and 54.4 GeV
- ALICE at 2.76 and 5.02 TeV
 - Expected signal is of the order of current statistical uncertainty
- HADES at 2.4 GeV
 - Large uncertainty but still preliminary
 - Hopefully reduce systematic uncertainty

Collection of recent results

ALICE, PRC101.044611 (2020)

F. Kornas (HADES), SQM2019

J. Adams, K. Okubo (STAR), QM2019

Energy dependence of kinematic and thermal vorticity with UrQMD X.-G. Deng et al., PRC101.064908 (2020)

HADES: 2-3 GeV

STAR FXT: 3-7.7 GeV

STAR BES-II: 7.7-19 GeV

A possible probe of B-field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$P_{\Lambda} \simeq rac{1}{2} rac{\omega}{T} + rac{\mu_{\Lambda} B}{T}$$
 $P_{ar{\Lambda}} \simeq rac{1}{2} rac{\omega}{T} - rac{\mu_{\Lambda} B}{T}$ μ_{Λ} : Λ magnetic moment

$$B = (P_{\Lambda} - P_{\bar{\Lambda}})T/(2\mu_{\Lambda})$$
 $\sim 2 \times 10^{11} \ [\mathrm{T}]$
 $eB \sim 10^{-2} \mathrm{m}_{\pi}^2$
 $\Delta P_{\Lambda} \sim 0.5\%$, T=160MeV

Conductivity increases lifetime.

- Based on thermal model, B-field at kinetic freeze-out could be probed by Λ-antiΛ splitting
 - Current results are consistent with zero (except 7.7 GeV)
- But the splitting could be also due to other effects...

Need caution for the interpretation

- Initial magnetic field
- Effect of chemical potential (expected to be small) R. Fang et al.,, PRC94, 024904 (2016)
- Rotating charged fluid produces B-field with longer lifetime X. Guo, J. Liao, and E. Wang, PRC99.021901(R) (2019)
- Spin interaction with the meson field generated by the baryon current L. Csernai, J. Kapusta, and T. Welle, PRC99.021901(R) (2019)
- Different space time distributions and freeze-out of Λ and anti Λ O. Vitiuk, L.Bravina, E. Zabrodin, PLB803(2020)135298

L. Csernai et al., PRC99.021901(R) (2019)

Differential measurements: centrality

In most central collision → no initial angular momentum. The polarization decreases in more central collisions. Similar trend was confirmed at lower energies.

Differential measurements: pt

Differential measurements: rapidity

W.T.Feng and X.G.Huang, PRC93.064907 (2016)

I.Karpenko and F.Becattini, EPJ(2017)77.213

Energy dependence of vorticity vs. rapidity

- Baryon stopping and velocity profile in the initial state at given acceptance

But the predicted polarization trend differs among models

Y.Xie, D.Wang, and L.P.Csernai, RPJ(2020)80:39 H.Z.Wu et al, PRResearch1.033058(2019)

D.X.Wei, W.T.Deng and X.G.Huang, PRC99.014905 (2019) Z.T.Liang et al., arXiv:1912.10223

Differential measurements: rapidity

No strong rapidity dependence within $|\eta| < 1$. This can be explored further with iTPC($|\eta| < 1.5$) and Forward upgrade (2023-).

Differential measurements: azimuthal angle

I. Karpenko and F. Becattini, EPJC(2017)77.213 D. Wei, W. Deng, and X. Huang, PRC99.014905 (2019)

|Y| < 1

- "T-vorticity" may explain the data? H. Wu et al., PR.Research1.033058 (2019)
- The data shows larger polarization for in-plane, while many models predict the opposite, i.e. larger for out-of-plane.
- Not fully understood yet

Differential measurements: charge asymmetry

Chiral Separation Effect $\, {f J}_5 \propto e \mu_{
m v} {f B} \,$

B-field + massless quarks + non-zero μ_ν → axial current J₅

- Ach dependence observed
 - Slopes of Λ and anti- Λ seem to be opposite (~2 σ level)
- Possible contribution from axial charge or
- Quark vector chemical potential may explain the data
 Sun and Ko, INT20-1-c

Other particles to measure polarization?

P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

	Mass (GeV/c²)	cτ (cm)	decay mode	decay parameter	magnetic moment (μ_N)	spin
Λ (uds)	1.115683	7.89	Λ->πp (63.9%)	0.732 ± 0.014	-0.613	1/2
Ξ⁻ (dss)	1.32171	4.91	Ξ ⁻ ->Λπ ⁻ (99.887%)	-0.401 ± 0.010	-0.6507	1/2
Ω^{-} (sss)	1.67245	2.46	Ω ⁻ ->ΛΚ ⁻ (67.8%)	0.0157±0.002	-2.02	3/2

Natural candidates would be Ξ and Ω hyperons.

- Different spin and magnetic moments
- Less feed-down in Ξ and Ω compared to Λ
- Could be different freeze-out
- Different valence s-quarks

W.-T. Deng and X.-G. Huang, PRC93.064907 (2016)

Based on thermal model:

$$P(s=1/2) \sim \omega/(2T)$$
, $P(s=3/2) \sim 4 \omega/(5T)$

F.Becattini et al., PRC95.054902 (2017)

20

Ξ and Ω polarization measurements

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H^* \cdot \hat{\boldsymbol{p}}_B^* \right)$$

Getting difficult due to smaller decay parameter for Ξ and Ω ...

$$\alpha_{\Lambda} = 0.732, \ \alpha_{\Xi^{-}} = -0.401, \ \alpha_{\Omega^{-}} = 0.0157$$

spin 1/2

Polarization of daughter Λ in a weak decay of Ξ : (based on Lee-Yang formula)

T.D. Lee and C.N. Yang, Phys. Rev. 108. 1645 (1957)

$$\mathbf{P}_{\Lambda}^{*} = \frac{(\alpha_{\Xi} + \mathbf{P}_{\Xi}^{*} \cdot \hat{\boldsymbol{p}}_{\Lambda}^{*})\hat{\boldsymbol{p}}_{\Lambda}^{*} + \beta_{\Xi}\mathbf{P}_{\Xi}^{*} \times \hat{\boldsymbol{p}}_{\Lambda}^{*} + \gamma_{\Xi}\hat{\boldsymbol{p}}_{\Lambda}^{*} \times (\mathbf{P}_{\Xi}^{*} \times \hat{\boldsymbol{p}}_{\Lambda}^{*})}{1 + \alpha_{\Xi}\mathbf{P}_{\Xi}^{*} \cdot \hat{\boldsymbol{p}}_{\Lambda}^{*}}$$

$$\mathbf{P}_{\Lambda}^{*} = C_{\Xi^{-}\Lambda}\mathbf{P}_{\Xi}^{*} = \frac{1}{3}\left(1 + 2\gamma_{\Xi}\right)\mathbf{P}_{\Xi}^{*}.$$

$$C_{\Xi^{-}\Lambda} = +0.927, \ \alpha^{2} + \beta^{2} + \gamma^{2} = 1$$

spin 3/2

Similarly, daughter Λ polarization from Ω :

$$\mathbf{P}_{\Lambda}^* = C_{\Omega^- \Lambda} \mathbf{P}_{\Omega}^* = \frac{1}{5} \left(1 + 4\gamma_{\Omega} \right) \mathbf{P}_{\Omega}^*.$$

Here γ_{Ω} is unknown.

Time-reversal violation parameter β would be small, then the polarization transfer $C_{\Omega \Lambda}$ leads to:

21

$$C_{\Omega\Lambda} \approx +1 \text{ or } -0.6$$

Parent particle polarization can be studied by measuring daughter particle polarization!

Ξ global polarizations at √s_{NN} = 200 GeV

^{*} published results are rescaled by α_{old}/α_{new}~0.87

- Ξ P_H by analyzing daughter Λ distributions
- less sensitive due to smaller $\alpha_{=}$ =-0.4 than α_{\wedge} =0.732
- \equiv P_H via daughter \land P_H (by granddaughter proton) with the polarization transfer C_{$\equiv \land = +0.927$}
- positive polarization with 2.2σ level
- slightly larger than inclusive Λ P_H
- close to AMPT prediction

W.-T. Deng and X.-G. Huang, PRC93.064907 (2016)

Naive expectations in Ξ vs. Λ P_H

- Lighter particles could be more polarized (**Ξ<**Λ)
- Earlier freeze-out (of multi-strangeness) leads to larger P_H (**Ξ>**Λ)

O.Vitiuk, L.V.Bravina, and E.E.Zabrodin, PLB803(2020)135298

- Feed-down: ~15-20% reduction for primary Λ P_H

\equiv global polarizations at $\sqrt{s_{NN}} = 200$ GeV and 27 GeV

^{*} published results are rescaled by α_{old}/α_{new}~0.87

- Ξ P_H by analyzing daughter Λ distributions
- less sensitive due to smaller $\alpha_{=}$ =-0.4 than α_{\wedge} =0.732
- \equiv P_H via daughter \land P_H (by granddaughter proton) with the polarization transfer C_{$\equiv \land = +0.927$}
- positive polarization with 2.2σ level
- slightly larger than inclusive Λ P_H
- close to AMPT prediction

W.-T. Deng and X.-G. Huang, PRC93.064907 (2016)

Naive expectations in Ξ vs. Λ P_H

- Lighter particles could be more polarized (**Ξ<**Λ)
- Earlier freeze-out (of multi-strangeness) leads to larger P_H (**Ξ>**Λ)

O.Vitiuk, L.V.Bravina, and E.E.Zabrodin, PLB803(2020)135298

23

- Feed-down: ~15-20% reduction for primary Λ P_H

Ω global polarizations at $\sqrt{s_{NN}} = 200$ GeV

 Ω P_H via daughter Λ P_H assuming the polarization transfer $C_{\Omega\Lambda}$ =+1

- Large uncertainty, to be improved in future analysis
- Based on the vorticity picture, the data seems to favor $C_{\Omega\Lambda}=+1$ ($\gamma_{\Omega}=+1$) rather than $C_{\Omega\Lambda}=-0.6$ ($\gamma_{\Omega}=-1$) * In other words, γ_{Ω} can be measured in HIC assuming the global polarization
- Also close to AMPT expectation

^{*} published results are rescaled by aold/anew~0.87

Centrality dependence of ΞP_H

* published results are rescaled by α_{old}/α_{new}~0.87

- Ξ P_H via daughter Λ P_H seems to increase in peripheral events, as seen in Λ P_H at 200 GeV
- No significant difference between Ξ and Ξ bar, therefore results are combined
- Qualitatively consistent with the centrality dependence of vorticity predicted in models

Y.Jiang, Z.W.Lin, and J.Liao, PRC94.044910 (2016)

Global spin alignment of vector mesons

Angular distribution of the decay products can be written with spin density matrix ρ_{nn} .

$$\frac{dN}{d\cos\theta^*} \propto \rho_{0,0}|Y_{1,0}|^2 + \rho_{1,1}|Y_{1,-1}|^2 + \rho_{-1,-1}|Y_{1,1}|^2 \propto \rho_{0,0}\cos^2\theta^* + \frac{1}{2}(\rho_{1,1} + \rho_{-1,-1})\sin^2\theta^*$$

$$\propto (1 - \rho_{0,0}) + (3\rho_{0,0} - 1)\cos^2\theta^*$$

$$\rho_{00} = \frac{1}{3} - \frac{8}{3} \langle \cos[2(\phi_p^* - \Psi_{RP})] \rangle$$

Species	K *0	φ
Quark content	ds	SS
Mass (MeV/c²)	896	1020
Lifetime (fm/c)	4	45
Spin (J ^P)	1-	1-
Decays	Κπ	KK
Branching ratio	~100%	66%

Deviation from 1/3 in ρ_{00} indicates spin alignment.

* sign of the polarization cannot be determined.

Therefore it's called "spin alignment measurement" rather than "polarization measurement"

Z.-T. Liang and X.-N. Wang, PRL94.102301(2005) Y. Yang et al., PRC97.034917(2018)

Theoretical expectation for ρ_{00}

Vorticity	
recombination	$ \rho_{00} < 1/3 $
fragmentation	$ \rho_{00} > 1/3 $
Magnetic field	$ ho_{00} > 1/3$ (for neutral vector mesons)

ρ₀₀ depends on hadronization process

Results from LHC and RHIC

ALICE, PRL125.012301 (2020) STAR, QM18, QM19 0.40 **ALICE** Event plane Event plane **STAR Preliminary** TPC-EP Au+Au 200 GeV 0.38 $1.2 < p_{_{\rm T}} < 5.4 \text{ GeV/c}$ Au + Au, 1.0 < p_{T} < 1.5 GeV/c ★ 54.4 GeV • $0.8 \le p_{\tau} < 1.2 \text{ (GeV/}c)$ |y| < 0.5200 GeV 0.36 0.35 $43.0 \le p_{\tau} < 5.0 \; (\text{GeV}/c)$ 0.4 ا3.0 ⁸ 0.34 ° 0.30 0.32 0.2 0.25 0.3 **STAR** preliminary • 0.5 ≤ p_T < 0.7 (GeV/c) • 3.0 ≤ p_T < 5.0 (GeV/c) 0.1 +0.1100 200 300 Centrality (%) $\langle N_{\text{part}} \rangle$ 300 100 300 100 200 $\langle N_{\rm part} \rangle$ $\langle N_{\text{part}} \rangle$

Large deviation from 1/3, which cannot be explained by the vorticity picture

$$\rho_{00} = 1/[3 + (\omega/T)^2].$$

- The deviation in opposite way between:
 - ${}^{\square}$ K* and ϕ at RHIC
 - \Box LHC and RHIC for ϕ

Mean field of φ meson may play a role?

Does it change from RHIC to LHC only for φ?

- X. Sheng, L. Oliva, and Q. Wang, PRD101.096005(2020)
- X. Sheng, Q.Wang, and X. Wang, PRD102.056013 (2020)

Outlook

- More precise measurements will be done in the following years
 - o High statistics data of BES-II 7.7-19.6 GeV and FXT 3-7.7 GeV
 - o Isobaric collision data (Ru+Ru, Zr+Zr), ~10% difference in B-field
 - o Forward detectors in Run-2023 Au+Au 200 GeV

Summary

- □ Global polarization of Λ has been observed at $\sqrt{s_{NN}} = 7.7-200$ GeV
 - Most vortical fluid (ω ~10²¹ s⁻¹) created in heavy-ion collisions
 - Energy dependence, increasing in lower $\sqrt{s_{NN}}$, is captured well by theoretical models
 - o Azimuthal angle dependence is not fully understood yet
- □ First measurements of Ξ and Ω global polarizations at $\sqrt{s_{NN}} = 27$ and 200 GeV
 - Positive signal of Ξ polarization, comparable to or slightly larger than Λ , has been observed
 - Qualitatively consistent with AMPT predictions
 - \circ Current result of Ω polarization has large uncertainty, which can be improved in future analysis
- Global spin alignment shows larger deviation from 1/3
 - $\circ \phi$ meson field may explain this large deviation?
 - \circ Different trends between RHIC and LHC; ϕ meson needs to be understood

There are still many open questions and more precise results are needed.

Back up

30

Ξ global polarization at $\sqrt{s_{NN}} = 27$ GeV

- * published results are rescaled by aold/anew~0.87
 - \equiv polarization signal can be also seen at 27 GeV, comparable to or slightly larger than inclusive Λ .
 - No clear centrality dependence with current precision.

Polarization along the beam direction

- Sine structure as expected from the elliptic flow
- □ Some models cannot describe the sign but some can do. Note that they reasonably describe "global" P_{H.}
 - F. Becattini and I. Karpenko, PRL.120.012302 (2018)
 - X. Xia et al., PRC98.024905 (2018)
 - Y. Sun and C.-M. Ko, PRC99, 011903(R) (2019)
 - Y. Xie, D. Wang, and L. P. Csernai, Eur. Phys. J. C (2020) 80:39
 - W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)
 - H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)

32

Disagreement in Pz sign

Opposite sign

- UrQMD IC + hydrodynamic model F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- AMPT X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign

- Chiral kinetic approach
 Y. Sun and C.-M. Ko, PRC99, 011903(R) (2019)
- High resolution (3+1)D PICR hydrodynamic model Y. Xie, D. Wang, and L. P. Csernai, EPJC80.39 (2020)
- Blast-wave model S. Voloshin, EPJ Web Conf.171, 07002 (2018), STAR, PRL123.13201

Partly (one of component showing the same sign)

- Glauber/AMPT IC + (3+1)D viscous hydrodynamics H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)
- Thermal model W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)

Incomplete thermal equilibrium of spin degree of freedom?

pt and centrality dependence of Pz modulation

STAR, PRL123.13201 (2019)

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)

- No strong p_T dependence but a hint of drop-off at p_T<1 GeV/c</p>
- Strong centrality dependence as in v₂
- Blast-Wave model as a simple estimate for kinematic vorticity can describe the data

34